

MD32PFS(Profibus)卡 使用说明书

V2.1

深圳市汇川技术股份有限公司

资料编号: 19010019

目录

第一章 概述	. 3
第二章 安装和接线	٠ 4
2.1 拨码开关说明 ······	5
2.2 接口说明	5
第三章 PROFIBUS_DP说明······	. 8
3.1 PROFIBUS的简单介绍 ······	8
3.2 MD32PFS卡支持的格式 ······	9
3.3 PPO的描述 ······	9
第四章 PROFIBUS通讯使用的相关配置参数 ······	22
第五章 在S7-300的主站配置GSD操作	24
5.1 首先在STEP7中建立一工程,在工程中添加S7-300的主站, 示如下······	
5.2 双击硬件标志进入HW config配置,在HW config配置画面漆 MD32PFS.GSD文件,操作如下 ····································	
5.3 配置系统实际的硬件系统如下图 ·····	26
5.4 配置从站的数据特性 ·····	26
第六章 故障描述和处理	27

第一章 概述

感谢您使用汇川技术MD32PFS(PROFIBUS—DP)现场总线适配器。PROFIBUS是国际上开发的现场总线标准,MD32PFS符合标准的PROFIBUS现场总线的国际标准,和汇川技术的变频器—起使用能实现变频器是现场总线的一部分,实现真正的现场总线的控制。

在系统中采用PROFIBUS现场总线有如下好处:节省硬件和安装费用、节省工程费用、更大的制造灵活性。

在使用本产品前,请认真的阅读本手册。

第二章 安装和接线

MD32PFS卡内嵌入汇川技术的变频器中,安装前请关断变频器供电电源,10分钟后等变频器充电指示灯彻底熄灭才能进行安装。请参考图2-1的安装示意进行安装。

在MD32PFS卡插入变频器后请固定相应的螺钉,把MD32PFS卡的"PE"大地和变频器"PE"可靠连接。

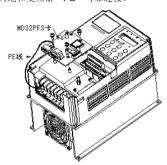


图2-1 MD32PFS卡端子示意图

2.1 拨码开关说明

拨码开 关位号	功能		说印	月
1, 2	PROFIB-US终 端电阻选择			模块是最后位置 把1,2置为ON
		位3	位4	说明
	MD32PFS卡与	OFF	OFF	4800
3, 4	变频器通讯的波	ON	OFF	9600
	特率选择	OFF	ON	19200
		ON	ON	38400
		位5	位6	说明
	选择MD32PFS	OFF	OFF	PPO1格式
5, 6	卡通讯的数据格	ON	OFF	PPO2格式
	式	OFF	ON	PPO3格式
		ON	ON	PPO5格式
7, 8	保留			

2.2 接口说明

1) 可插拔线缆端子头-4PIN。

端子标识	名称	功能
PE	大地线	保护地
DG	通讯卡电源地	PROFIBUS数字地
A(TR+)	数据线正极	PROFIBUS数据线
B (TR-)	数据线负极	PROFIBUS数据线

2) PROFIBUS9针标准接口说明:

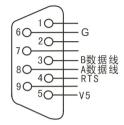


图2-2 PROFIBUS9针标准接口图 此接口和PROFIBUS标准的接口信号完全相同。

端子标识	名称	功能
G	5V电源地	电源地
V5	5V电源	电源
B数据线	数据线负极	PROFIBUS数据线
A数据线	数据线正极	PROFIBUS数据线
RTS	请求发送信号	发送控制

3) 与PROFIBUS的连接示意图:

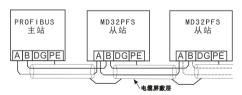


图2-3 与PROFIBUS的连接示意图

PROFIBUS的连接方式MD32PFS提供了两种方法,其中DB9

第二章 安装和接线

为标准的SIEMENS的DB9插座。对系统的PE级一定要可靠的接地。如果使用的波特率比较高,必须严格的按照SIEMENS的DB9接线标准。对不同的波特率有不同的导线长度,具体描述如下表:

传输率Kbps	导线A(m)	导线B(m)
9.6	1200	1200
19.2	1200	1200
187.5	600	600
500	200	200
1500	100	100
6000	100	100
12000	100	100

第三章 PROFIBUS DP说明

3.1 PROFIBUS的简单介绍

PROFIBUS-DP和PROFIBUS主站的通讯都是通过服务存取点 (Service Access points SAP)访问PROFIBUS数据链路层Layer 2 中的服务,在PROFIBUS中每个服务存取点(SAP)都有明确的定义,具体请参考PROFIBUS的相关协议。本协议PROFIDRIVE(变速传动)用PROFIBUS协议的模型,满足PROFIDRIVE的参数数据和过程数据。

在PROFIDRIVE(变速传动)协议中使用PPO(Parameter/Process data Objects)类型作为数据传送格式,PPO类型分为PPO1、PPO2、PPO3、PPO4、PPO5,而在我们的系统中没有使用PPO4、对PPO5的格式有PZD参数有扩容,满足用户对变频器多种功能的完美控制。

对PPO格式的具体描述如下:

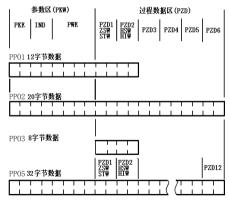


图3-1 PPO类型描述图

3.2 MD32PFS卡支持的格式

MD32PFS卡支持PROFIBUSDRIVE的数据格式为PPO1, PPO2, PPO3, PP05不同的用户根据自己实际的需求可以选择对 应的数据格式。每个数据格式的特点描述如下:

数据 类型	支持的 数据信息	反应 速度	适应范围
PPO1	次少	次快	需要的数据信息一般
PPO2	次多	次慢	需要比较多的数据信息
PPO3	少	快	需要的数据信息少
PPO5	多	慢	需要多的数据信息

3.3 PPO的描述

3.3.1 PPO1参数区数据格式的描述

1) PKE的描述:

图3-2 PKE的描述图

2) 命令号的描述:

命令号	功能描述
0	无任务
1	请求读取功能码参数数据(字)
2	请求更改功能码参数数据(字)
14	请求更改功能码参数并存储至 EEPROM(字)

第三章 PROFIBUS_DP说明

命令号	功能描述
其它	保留

3) 参数在不同命令下的描述:

参数号	1命令	2命令	14命令
PKW[1], PKW[2] PKW[6], PKW[7]	读操作	写操	作
PZD1	读/写操作		
PZD2	读操作	读/写	· 操作
PZD3~PZD12	读操作	读/写操作由变频器的FE组 功能码决定具体参考下表	

4) 响应号的描述:

响应号	内容描述
0	无响应
1	功能码参数操作正确(读取/更改)
7	无法执行,错误号在参数的最低字节
其它	保留

在响应命令号为7时对应的错误编号的定义:

错误号	内容描述
0	无效地址
1	参数更改无效
2	无效参数
12	密码错误

错误号	内容描述
101	系统被锁定
102	与变频器通讯错误(002,003)
其它	保留

5) IND的描述:

图3-3 IND的描述图

6) PWE的描述:

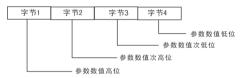


图3-4 PWE的描述图

7) 参数区PKE实例的描述:

a) 读变频器的最大频率功能码F0-10, 假如最大频率数 为60.00Hz 其具体的命令帧如下:

图3-5参数区PKE实例的描述1

b) 设定变频器的最大频率功能码F0-10,设定的数据为

50.00Hz其具体的命令帧如下:

图3-6参数区PKE实例的描述2

3.3.2 PPO1过程数据的描述

1) 过程数据的PZD1的描述:

数据格式如下:

图3-7过程数据的PZD1的描述格式图

a) 主机到从机为控制字:

控制字(位)	值	定义内容	功能描述
Bit0	0	减速停机无效	
Біш	1	减速停机	
Bit1	0	自由停车无效	
DILI	1	自由停车	
Bit2	0	正转运行无效	
DILZ	1	正转运行	
Bit3	0	反转运行无效	
ыю	1	反转运行	
Bit4	0	正转点动运行无效	
DIL4	1	正转点动运行	

第三章 PROFIBUS_DP说明

控制字(位)	值	定义内容	功能描述
Bit5	0	反转点动运行无效	
БІІЭ	1	反转点动运行	
Bit6	0	无意义	
Бію	0→1	故障复位	
Bit7	0	主站控制无效	主站传送的控 制字和设定值 无效
DILI	1	主站控制有效	主站传送的控 制字和设定值 有效
Bit8	0	卷径复位无效	只有MD330时
DILO	1	卷径复位有效	才有此功能
Bit9	0	预驱动开始无效	
ыв	1	预驱动开始有效	
Bit10	0	预驱动结束无效	
Бісто	1	预驱动结束有效	
Bit11-Bit15	保留		

b) 控制字的组合举例:

PZD1数值	功能描述
0X0084	变频器的正转控制
0X0088	变频器的反转控制
0X0082	变频器的自由停机控制
0X0081	变频器的减速停机控制

c) 从机到主机为状态字:

控制 字(位)	值	定义内容	功能描述
Bit0	0	变频器停机状态	
DILU	1	变频器运行状态	
Bit1	0	变频器非正转运行	
DILI	1	变频器正转运行	
Bit2	0	变频器非反转运行	
DILZ	1	变频器反转运行	
Bit3	0	变频器无故障	变频器故障标志
ВІІЗ	1	变频器有故障	位的描述
Bit4	0	自由停车	
Віі4	1	非自由停车	
	0	与变频器通讯无故障	与变频器
Bit5	1	与变频器通讯有故障	MODBUS通讯 的状态
Bit6	0	变频器控制量不为通讯控制	速度控制/转矩
DILO	1	变频器控制量为通讯控制	控制
Bit7	0	低于设定频率	在速度控制时的
DILI	1	到达设定频率	状态量
Bit8	0	输出PZD参数无效	Profibus从站
DILO	1	输出PZD参数有效	→Profib-us主站
Bit9	0	输入PZD参数无效	Profibus主站
Bita	1	输入PZD参数有效	→Profib-us从站

第三章 PROFIBUS DP说明

控制 字(位)	值	定义内容	功能描述
Bit10	0	速度控制无效	变频器速度控制
DILIU	1	速度控制有效	状态的描述
Bit11	0	转矩控制无效	变频器转矩控制
DILII	1	转矩控制有效	状态的描述
Bit12	0	命令源选择 通讯无效	变频器对控制命 令的使能
	1	命令源选择通讯有效	マ的使服
Bit13-	保		
Bit15	留		

2) 过程数据的PZD2的描述:



图3-8 过程数据的PZD2的描述图

控制状态	主站→从站	从站→主站
频率控制	运行频率的设定(最大频 率的百分系数)	实际的运行频率
转矩控制	运行转据的设定(最大转 矩的百分系数)	实际的运行转矩

对表格内的参数具体参考变频器相关参数说明。

3.3.3 PPO2的描述

PKW区、PZD1和PZD2与PPO1的描述相同:

写入操作时请在第一个字节写入"0X20"

PZD3-PZD6的对应关系如下:

PZD类型	FE参数的位置	描述
PZD3	I FF-00	具体对应关系见"3.3.6 变频器FE参数与PZD参数的对应关系"
PZD4	FE-01	
PZD5	FE-02	
PZD6	FE-03	

3.3.4 PPO3的描述

PPO3协议的过程数据区(PZD)的PZD1和PZD2和PPO1的定义 完全相同。

3.3.5 PPO5的描述

PKW区、PZD1和PZD2与PPO1的描述相同;

写入操作时请在第一个字节写入"0X20"

PZD3-PZD12的对应关系如下:

第三章 PROFIBUS DP说明

PZD类型	FE参数的位置	描述
PZD3	FE-00	
PZD4	FE-01	
PZD5	FE-02	
PZD6	FE-03	
PZD7	FE-04	具体对应关系见"3.3.6
PZD8	FE-05	变频器FE参数与PZD 参数的对应关系"
PZD9	FE-06	S SKIINI E JON
PZD10	FE-07	
PZD11	FE-08	
PZD12	FE-09	

3.3.6 描述变频器FE参数与PZD3-PZD12参数的对应关系

变频器功能码		映射为FE组参数的功 能码(十进制)	
	F0-00	04 (24)	0100
F0-xx组		01xx(读) 101xx(写)	
	F0-18		0118
	F1-00	02xx(读) 102xx(写)	0200
F1-xx组			
	F1-11		0211
	F2-00	03xx(读) 103xx(写)	0300
F2-xx组			
	F2-12	100/01(-3)	0312

变频器功能码		映射为FE组参数的功 能码(十进制)	
	F3-00		0400
F3-xx组		04xx(读) 104xx(写)	
	F3-11	10422(-3)	0411
	F4-00	05 (24)	0500
F4-xx组		05xx(读) 105xx(写)	
	F4-32	100xx(→)	0532
	F5-00	00 (24)	0600
F5-xx组		06xx(读) 106xx(写)	
	F5-13	TUbXX(与)	0613
	F6-00	07xx(读) - 107xx(写)	0700
F6-xx组			
	F6-15		0715
	F7-00	00 ()+)	0800
F7-xx组		08xx(读) 108xx(写)	
	F7-11	10000(⇒)	0811
	F8-00	00 ()+)	0900
F8-xx组		09xx(读) 109xx(写)	
	F8-23	ioaxx(⇒)	0923
	F9-00	10xx(读) 110xx(写)	1000
F9-xx组			
	F9-21	110AA(-3)	1021

第三章 PROFIBUS_DP说明

变频器功能码		映射为FE组参数的功 能码(十进制)	
	FA-00	4.4 ()-25)	1100
FA-xx组		11xx(读) 111xx(写)	
	FA-10	111xx(<i>⇒</i>)	1110
	FB-00	10 ()+)	1200
FB-xx组		12xx(读) 112xx(写)	
	FB-09	112∧∧(¬)	1209
	FC-00	10 ()+)	1300
FC-xx组		13xx(读) 113xx(写)	
	FC-50	113AA(→)	1350
	FD-00		1400
FD-xx组		14xx(读) 114xx(写)	
	FD-50		1450
	FH-00	00 (14)	2000
FH-xx组		20xx(读) 120xx(写)	
	FH-65	120∧∧(→)	2065
	0x10-00	00 ()+)	3000
0X10xx组		30xx(读) 130xx(写)	
	0x10-11	100∧∧(⊸)	3017
0X2000组	命令功能	31xx(读) 131xx(写)	3100
0X3000组	命令功能	32xx(读) 132xx(写)	3200

变频器功能码		映射为FE组参数的功 能码(十进制)	
0X4000组	命令功能	33xx(读) 133xx(写)	3300
0X5000组	命令功能	34xx(读) 134xx(写)	3400
0X6000组	命令功能	35xx(读) 135xx(写)	3500
0X7000组	命令功能	36xx(读) 136xx(写)	3600
0X8000组	命令功能	37xx(读) 137xx(写)	3700
0X9000组	命令功能	38xx(读) 138xx(写)	3800
0XA000组	命令功能	39xx(读) 139xx(写)	3900

用户在使用PPo2和PPo5时,请首先设定好变频器的FE组参数与PPo中的PZD对应;采用设定FE组参数的方式,用户可以对变频器灵活的控制。

使用情况的举例:

FE组 参数	PZD参数	FE设定 数据	描述
FE-00	PZD3	10115	写F0-15参数的数值
FE-01	PZD4	11104	写FA-04参数的数值
FE-02	PZD5	10903	写F8-03参数的数值

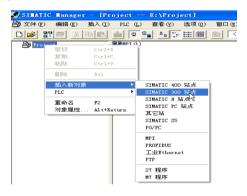
第三章 PROFIBUS_DP说明

FE组 参数	PZD参数	FE设定 数据	描述
FE-03	PZD6	3003	读快捷命令0x1003的输出电 流值
FE-04	PZD7	10117	写F0-17参数的数值
FE-05	PZD8	11002	写F9-02参数的数值
FE-06	PZD9	11100	写FA-00参数的数值
FE-07	PZD10	11205	写FB-05参数的数值
FE-08	PZD11	11318	写FC-18参数的数值
FE-09	PZD12	10804	读F7-04参数的数值

注: 更改FE组参数后,请重新上电。

第四章 PROFIBUS通讯使用的相关配置参数

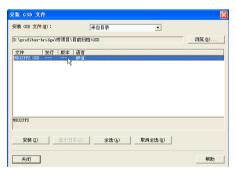
功能码	名称	设定范围	
F0-02	命令源选择	0: 操作面板通讯命令通道 1: 端子命令通道 2: 串行口通讯命令通道	
F0-03	主频率源 X 选择	0: 数字设定UP、DOWN调节(不记忆) 1: 数字设定UP、DOWN调节(记忆) 2: Al1 3: Al2 4: Al3 5: PULSE脉冲设定(DI5) 6: 多段速 7: PLC 8: PID 9: 通讯给定	
F0-04	辅助频率源 Y选择	0: 数字设定UP、DOWN(不记忆) 1: 数字设定UP、DOWN(记忆) 2: Al1 3: Al2 4: Al3 5: PULSE脉冲设定(X5) 6: 多段速 7: PLC 8: PID 9: 通讯给定	
F0-10	最大频率	50.00Hz~300.00Hz	
F2-08	转矩控制	0: 无效 1: 有效	


第四章 PROFIBUS通讯使用的相关配置参数

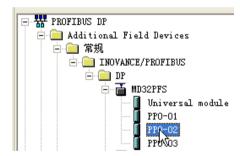
功能码	名称	设定范围	
F2-09	转矩上限源	0: F2-10 1: Al1 2: Al2 3: Al3 4: PULSE设定 5: 通信给定	
FD-00	波特率	4: 4800BPS 5: 9600BPS 6: 19200BPS 7: 38400BPS	通过MD32PFS拨码开关的第3,4位可以选择和变频器相同的波特率
FD-01	数据格式	0: 无校验	
FD-02	本机地址	1-126	

第五章 在S7-300的主站配置GSD操作

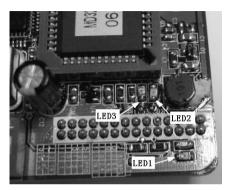
在PROFIBUS主站使用时一定要首先配置从站的GSD文件,使对应从站设备添加到主站的系统中。GSD文件可以向供应商或厂家索取。具体操作如下:


5.1 首先在STEP7中建立一工程,在工程中添加S7-300的主站,图示如下:

5.2 双击硬件标志进入HW config配置,在HW config配置画面添加MD32PFS.GSD文件,操作如下:


操作如上的步骤MD32PFS的PROFIBUS-DP模块在系统中就存在。

5.3 配置系统实际的硬件系统如下图:



5.4 配置从站的数据特性:

以上所有的操作完成了PROFIBUS从站的操作,在S7-300中编写相应的程序就可以控制变频器。

第六章 故障描述和处理

类型	LED1 (红)	LED3 (红)	LED2 (绿)	现象描述	对应的处理措施
1	亮	慢闪烁	灭	系统内部自 检错误	请重新上电或重新 安装硬件,如果还有 错误请与厂商联系
2	亮	亮	灭	与变频器通 讯不正常	请检查变频器FD 组参数是否和 MD32PFS的拨码设 定是否正确
3	灭	灭	灭	MD32PFS板 没上电	请检查与变频器接 口是否接好

第六章 故障描述和处理

类型	LED1 (红)	LED3 (红)	LED2 (绿)	现象描述	对应的处理措施
4	亮	灭	灭	PROFIBU-S 主站没建立 通讯	请检查与变频器波 特率设定,PROF- IBUS主站配置 是否正确,请检查 PROFIB-US连接电 缆是否连接正确
5	亮	亮	亮	已建立通讯待 机系统正常	

保修协议

本产品保修期为十八个月(以机身条型码信息为准),保修期内按照使用说明书正常使用情况下,产品发生故障或损坏,我公司负责免费维修。

保修期内, 因以下原因导致损坏, 将收取一定的维修费用:

- A、因使用上的错误及自行擅自修理、改造而导致的机器损坏;
- B、由于火灾、水灾、电压异常、其它天灾及二次灾害等造成的机器损坏;
 - C、购买后由于人为摔落及运输导致的硬件损坏;
 - D、不按我司提供的用户手册操作导致的机器损坏:
 - E、因机器以外的障碍(如外部设备因素)而导致的故障及损坏;

产品发生故障或损坏时,请您正确、详细的填写《产品保修 卡》中的各项内容。

维修费用的收取,一律按照我公司最新调整的《维修价目表》为准。

本保修卡在一般情况下不予补发,诚请您务必保留此卡,并在 保修时出示给维修人员。

在服务过程中如有问题,请及时与我司代理商或我公司联系。 本协议解释权归深圳市汇川技术股份有限公司。

> 深圳市汇川技术股份有限公司 客户服务中心

地址:深圳市宝安区宝城70区留仙二路鸿威工业园E栋 全国统一服务电话: 400-777-1260 邮编: 518101

网址: www.inovance.cn

	单位地址:				
客户	单位名称:	联系人:			
信息	邮政编码:	联系电话:			
	产品型号:				
产品信息	机身条码(粘贴在此处):				
	代理商名称:				
	(维修时间与内容):				
故障 信息					
	维修人:				